Characterizing Planets

Mark Marley
NASA Ames Research Center

Why Characterize Planets?

- Giants
- Terrestrials Carl Pilcher

Giant Planets are not Interesting

- Radial velocity & SIM will determine masses and orbits
- Giants are not interesting for astrobiology
- Giant planet science provides no heritage for terrestrial planet characterization and is a "niche" field
- Small, giant planet-focused missions are not interesting, not on the critical path to detecting Earths, and are not worth flying

Giant Planets are Interesting

- Radial velocity & SIM will determine masses and orbits: Planets are more than masses on springs and well characterized planets are fiducials for more distant or younger objects which may lack RV/astrometric masses
- Giants are not interesting for astrobiology: they
 provide a record of stellar system formation & perhaps
 volatile transport
- Giant planet science provides no heritage for terrestrial planet characterization: provide end to end experience of planet characterization, heritage for bigger efforts

Giant Planets are Interesting

- Hot Jupiters have yielded far more interesting science than anyone ever imagined
- There will be a great diversity of worlds ("There is more in heaven and Earth..."); warm Neptunes to cold Jupiters -- mass alone does not characterize
- More prosaically...
 - Each planet costs ~\$100,000+ to discover, we should capitalize on the investment
 - NASA routinely spends several hundred million (e.g., JUNO) to several billion (e.g., Cassini) to study one planet

Characterization

- Mass Easiest, but need to model how well a few coronagraphic images can resolve sin i
- Radius Scattered light alone does not tightly constrain radius since albedo uncertain R²a

(2007)

Synergy with IR

$$L = 4\pi R^2 \sigma T_{
m eff}^4 = (1-\Lambda)\pi R^2 (\pi {\cal F}_\star) + L_{
m int}$$
 Visible

Constraining R

$$L = 4\pi R^2 \sigma T_{
m eff}^4 = (1 - \Lambda)\pi R^2 (\pi \mathcal{F}_\star) + L_{
m int}$$
 Visible

$$\frac{\delta R}{R} > \frac{1}{2} \frac{\delta L_{\mathrm{int}}}{L}$$

easily 30% or more

Conventional methods will not give accurate radii

Need Gravity Indicators

Spectra!

Characterization

- Mass
- Radius
- Albedo
- Effective temperature
 - Equilibrium temperature
 - Internal luminosity

Characterization

- Mass
- Radius
- Albedo
- Effective temperature
 - Equilibrium temperature
 - Internal luminosity
- Atmospheric Composition

Composition Also Requires Spectra

Lodders (2005)

At Low Spectral Resolution

- Challenges
 - Clouds shape continuum
 - Hazes are a concern
- Can place constraints on
 - Composition
 - Gravity and hence radius
 - C/O
- Spectra are strongly prefered

Terrestrial Planets

Characterizing Earths

A Brief History of Earth's Atmosphere

Terrestrials

- Hazes, clouds, etc. are also concerns
- Information is in band depths and spectral shapes
- Is it possible to get adequate S/N with modest sized telescope?

